Python utils 模块,Timer() 实例源码

我们从Python开源项目中,提取了以下4个代码示例,用于说明如何使用utils.Timer()

项目:MUSE    作者:MiuLab    | 项目源码 | 文件源码
def evaluate(sess):
  with Timer("get embedding for 1st half of evaluation data"):
    [senseVec, senseScore] = getEmbedding(sess,testData, testLocation)

  indices1 = range(0,len(senseVec),2)
  indices2 = range(1,len(senseVec),2)

  avgSimC = calAvgSimC(test_score, senseVec[indices1], senseScore[indices2], senseVec[indices2], senseScore[indices2])
  maxSimC = calMaxSimC(test_score, senseVec[indices1], senseScore[indices2], senseVec[indices2], senseScore[indices2])

  scores = [maxSimC, avgSimC]
  score_name = ['MaxSimC', 'AvgSimC']

  print '============================'
  print 'AvgSimC =','{:.5f}'.format(avgSimC), 'MaxSimC =','{:.5f}'.format(maxSimC)
  print '============================'
  return [scores, score_name]
项目:MUSE    作者:MiuLab    | 项目源码 | 文件源码
def evaluate(sess):
  with Timer("get embedding for 1st half of evaluation data"):
    [senseVec, senseScore] = getEmbedding(sess,testData, testLocation)

  indices1 = range(0,len(senseVec),2)
  indices2 = range(1,len(senseVec),2)

  avgSimC = calAvgSimC(test_score, senseVec[indices1], senseScore[indices2], senseVec[indices2], senseScore[indices2])
  maxSimC = calMaxSimC(test_score, senseVec[indices1], senseScore[indices2], senseVec[indices2], senseScore[indices2])

  scores = [maxSimC, avgSimC]
  score_name = ['MaxSimC', 'AvgSimC']

  print 'AvgSimC =','{:.5f}'.format(avgSimC), 'MaxSimC =','{:.5f}'.format(maxSimC)
  return [scores, score_name]
项目:TA_example_labs    作者:mit-racecar    | 项目源码 | 文件源码
def __init__(self):
        self.trajectory_topic = rospy.get_param("~trajectory_topic")
        self.odom_topic       = rospy.get_param("~odom_topic")
        self.lookahead        = rospy.get_param("~lookahead")
        self.max_reacquire    = rospy.get_param("~max_reacquire")
        self.speed            = float(rospy.get_param("~speed"))
        self.wrap             = bool(rospy.get_param("~wrap"))
        wheelbase_length      = float(rospy.get_param("~wheelbase"))
        self.drive_topic      = rospy.get_param("~drive_topic")

        self.trajectory  = utils.LineTrajectory("/followed_trajectory")
        self.model       = utils.AckermannModel(wheelbase_length)
        self.do_viz      = True
        self.odom_timer  = utils.Timer(10)
        self.iters       = 0

        self.nearest_point   = None
        self.lookahead_point = None

        # set up the visualization topic to show the nearest point on the trajectory, and the lookahead point
        self.viz_namespace = "/pure_pursuit"
        self.nearest_point_pub = rospy.Publisher(self.viz_namespace + "/nearest_point", Marker, queue_size = 1)
        self.lookahead_point_pub = rospy.Publisher(self.viz_namespace + "/lookahead_point", Marker, queue_size = 1)

        # topic to send drive commands to
        self.control_pub = rospy.Publisher(self.drive_topic, AckermannDriveStamped, queue_size =1 )

        # topic to listen for trajectories
        self.traj_sub = rospy.Subscriber(self.trajectory_topic, PolygonStamped, self.trajectory_callback, queue_size=1)

        # topic to listen for odometry messages, either from particle filter or the simulator
        self.odom_sub = rospy.Subscriber(self.odom_topic,  Odometry, self.odom_callback, queue_size=1)
        print "Initialized. Waiting on messages..."
项目:CausalGAN    作者:mkocaoglu    | 项目源码 | 文件源码
def train(self):
        self.train_timer   =Timer()
        self.losses_timer  =Timer()
        self.tvd_timer     =Timer()
        self.scatter_timer =Timer()

        self.log_step=50
        self.max_step=50001
        #self.max_step=501
        for step in trange(self.max_step):

            if step % self.log_step == 0:
                for gan in self.gans:
                    self.losses_timer.on()
                    gan.record_losses(self.sess)
                    self.losses_timer.off()

                    self.tvd_timer.on()
                    gan.record_tvd(self.sess)
                    self.tvd_timer.off()

            if step % (10*self.log_step) == 0:
                for gan in self.gans:
                    self.scatter_timer.on()
                    gan.record_scatter(self.sess)

                    #DEBUG: reassure me nothing changes during optimization
                    #self.data_scatterplot()

                    self.scatter_timer.off()

            if step % (5000) == 0:
                self.saver.save(self.sess,self.save_model_name,step)

            self.train_timer.on()
            self.sess.run(self.train_op)
            self.train_timer.off()


        print("Timers:")
        print(self.train_timer)
        print(self.losses_timer)
        print(self.tvd_timer)
        print(self.scatter_timer)