PyTorch实现逻辑回归 PyTorch实现线性回归 PyTorch 实现前馈神经网络 import torch import torch.nn as nn import torchvision import torchvision.transforms as transforms # Hyper-parameters input_size = 784 num_classes = 10 num_epochs = 5 batch_size = 100 learning_rate = 0.001 # MNIST dataset (images and labels) train_dataset = torchvision.datasets.MNIST(root='../../data', train=True, transform=transforms.ToTensor(), download=True) test_dataset = torchvision.datasets.MNIST(root='../../data', train=False, transform=transforms.ToTensor()) # Data loader (input pipeline) train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True) test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=False) # Logistic regression model model = nn.Linear(input_size, num_classes) # Loss and optimizer # nn.CrossEntropyLoss() computes softmax internally criterion = nn.CrossEntropyLoss() optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate) # Train the model total_step = len(train_loader) for epoch in range(num_epochs): for i, (images, labels) in enumerate(train_loader): # Reshape images to (batch_size, input_size) images = images.reshape(-1, 28*28) # Forward pass outputs = model(images) loss = criterion(outputs, labels) # Backward and optimize optimizer.zero_grad() loss.backward() optimizer.step() if (i+1) % 100 == 0: print ('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}' .format(epoch+1, num_epochs, i+1, total_step, loss.item())) # Test the model # In test phase, we don't need to compute gradients (for memory efficiency) with torch.no_grad(): correct = 0 total = 0 for images, labels in test_loader: images = images.reshape(-1, 28*28) outputs = model(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum() print('Accuracy of the model on the 10000 test images: {} %'.format(100 * correct / total)) # Save the model checkpoint torch.save(model.state_dict(), 'model.ckpt') PyTorch实现线性回归 PyTorch 实现前馈神经网络