我们从Python开源项目中,提取了以下28个代码示例,用于说明如何使用rospy.Timer()。
def __init__(self): rospy.init_node('multiplexer_node', anonymous=False) rospy.loginfo('\033[93m[%s]\033[0m wait for bringup social_events_memory...'%rospy.get_name()) rospy.wait_for_service('social_events_memory/read_data') self.rd_event_mem = rospy.ServiceProxy('social_events_memory/read_data', ReadData) rospy.Subscriber('forwarding_event', ForwardingEvent, self.handle_social_events) self.pub_rasing_event = rospy.Publisher('raising_events', RaisingEvents, queue_size=10) self.events_queue = Queue.Queue() self.recognized_words_queue = Queue.Queue() event_period = rospy.get_param('~event_period', 0.5) rospy.Timer(rospy.Duration(event_period), self.handle_trigger_events) rospy.loginfo('\033[93m[%s]\033[0m initialized...'%rospy.get_name()) rospy.spin()
def __init__(self): rospy.init_node('gaze', anonymous=False) self.lock = threading.RLock() with self.lock: self.current_state = GazeState.IDLE self.last_state = self.current_state # Initialize Variables self.glance_timeout = 0 self.glance_timecount = 0 self.glance_played = False self.idle_timeout = 0 self.idle_timecount = 0 self.idle_played = False rospy.loginfo('\033[92m[%s]\033[0m waiting for bringup social_mind...'%rospy.get_name()) rospy.wait_for_service('environmental_memory/read_data') rospy.wait_for_service('social_events_memory/read_data') self.rd_memory = {} self.rd_memory['environmental_memory'] = rospy.ServiceProxy('environmental_memory/read_data', ReadData) self.rd_memory['social_events_memory'] = rospy.ServiceProxy('social_events_memory/read_data', ReadData) rospy.Subscriber('raising_events', RaisingEvents, self.handle_raising_events) rospy.Subscriber('gaze_focusing', String, self.handle_gaze_focusing) self.pub_gaze_cmd = rospy.Publisher('gaze_command', GazeCommand, queue_size=10) self.pub_viz_gaze_cmd = rospy.Publisher('visualization_gaze_cmd', PointStamped, queue_size=10) rospy.Timer(rospy.Duration(GAZE_CONTROLLER_PERIOD), self.handle_gaze_controller) rospy.loginfo('\033[92m[%s]\033[0m initialized...'%rospy.get_name()) rospy.spin()
def __init__(self, image_path=None): height = int(rospy.get_param("~grid_height", 800)) width = int(rospy.get_param("~grid_width", 800)) resolution = rospy.get_param("~grid_resolution", .25) ogrid_topic = rospy.get_param("/lqrrt_node/ogrid_topic", "/ogrid") self.grid_drawer = DrawGrid(height, width, image_path) self.ogrid_pub = rospy.Publisher(ogrid_topic, OccupancyGrid, queue_size=1) m = MapMetaData() m.resolution = resolution m.width = width m.height = height pos = np.array([-width * resolution / 2, -height * resolution / 2, 0]) quat = np.array([0, 0, 0, 1]) m.origin = Pose() m.origin.position.x, m.origin.position.y = pos[:2] self.map_meta_data = m rospy.Timer(rospy.Duration(1), self.pub_grid)
def update_step_timer(self, step): """ Helper method that shuts the current step timer down, then recreates the step timer for the next step in the task. If the step timeout is zero, do not create a new timeout; otherwise create a new timer using the timeout value. Args: step (dict): the dictionary object representing the task step. """ if self.step_timer and self.step_timer.is_alive(): self.step_timer.shutdown() if not self.active: return if step and step.timeout > 0: self.step_timer = rospy.Timer( rospy.Duration(step.timeout), self.step_to_handler, oneshot=True )
def run(self): """ Pi Trees run callback that gets called when a previous task is completed. Responsible for spawning up next task and passing data b/t previous task and new one. """ # sleep to make sure completion audio and expression don't get # overrun by the next task if not self.spawning: self.spawning = True if self.spawn_delay > 0: self.timer = rospy.Timer(rospy.Duration(self.spawn_delay), self.timer_handler, oneshot=True) else: self.timer_handler() return pt.TaskStatus.RUNNING
def __init__(self): self.marker_id = rospy.get_param("~marker_id", 12) self.frame_id = rospy.get_param("~frame_id", "odom_meas") self.camera_frame_id = rospy.get_param("~camera_frame_id", "overhead_cam_frame") self.count = rospy.get_param("~count", 50) # local vars: self.calibrate_flag = False self.calibrated = False self.calibrate_count = 0 self.kb = kbhit.KBHit() self.trans_arr = np.zeros((self.count, 3)) self.quat_arr = np.zeros((self.count, 4)) self.trans_ave = np.zeros(3) self.quat_ave = np.zeros(3) # now create subscribers, timers, and publishers self.br = tf.TransformBroadcaster() self.kb_timer = rospy.Timer(rospy.Duration(0.1), self.keycb) rospy.on_shutdown(self.kb.set_normal_term) self.alvar_sub = rospy.Subscriber("ar_pose_marker", AlvarMarkers, self.alvarcb) return
def __init__(self, robotName, isConfirmation, suspect, baseBoid): self.posThreshold = np.array([1,1]) self.timeThreshold = 2 self.lastCheckIn = time.time() self.lastMsg = None self.boid = copy.deepcopy(baseBoid) self.robotName = robotName self.suspect = suspect self.isConfirm = isConfirmation self.suspicionPub = rospy.Publisher('/swarmflock/suspicion', SuspicionMsg, queue_size=10) self.boidSub = rospy.Subscriber('/' + self.suspect + '/swarmflock/boids', BoidMsg, self.handle_msg) self.client = WiFiTrilatClient() # Suspect variables self.suspectMAC = self.client.hostToIP(self.client.IPtoMAC(self.suspect)) self.suspectVel = np.array([0,0]) self.suspectPos = np.array([0,0]) self.suspicious = False self.runTimer = rospy.Timer(rospy.Duration(1), self.run)
def __init__(self): # Holds the current drone status self.status = -1 # Subscribe to the /ardrone/navdata topic, of message type navdata, and call self.ReceiveNavdata when a message is received self.subNavdata = rospy.Subscriber('/ardrone/navdata',Navdata,self.ReceiveNavdata) # Allow the controller to publish to the /ardrone/takeoff, land and reset topics self.pubLand = rospy.Publisher('/ardrone/land',Empty) self.pubTakeoff = rospy.Publisher('/ardrone/takeoff',Empty) self.pubReset = rospy.Publisher('/ardrone/reset',Empty) # Allow the controller to publish to the /cmd_vel topic and thus control the drone self.pubCommand = rospy.Publisher('/cmd_vel',Twist) # Setup regular publishing of control packets self.command = Twist() self.commandTimer = rospy.Timer(rospy.Duration(COMMAND_PERIOD/1000.0),self.SendCommand) # Land the drone if we are shutting down rospy.on_shutdown(self.SendLand)
def __init__(self, base_set_command='amixer -c 0 sset Master playback', base_get_command='amixer -c 0 sget Master playback'): self.base_set_cmd = base_set_command self.base_get_cmd = base_get_command self.curr_vol = 0 rospy.loginfo("VolumeManager using base set command: '" + self.base_set_cmd + "'") rospy.loginfo("VolumeManager using base get command: '" + self.base_get_cmd + "'") self.sub = rospy.Subscriber('~set_volume', Int8, self.cb, queue_size=1) # Get volume to start publishing self.curr_vol = self.get_current_volume() self.pub = rospy.Publisher('~get_volume', Int8, latch=True, queue_size=1) self.timer = rospy.Timer(rospy.Duration(1.0), self.curr_vol_cb)
def __init__(self, topic_prefix, config_file, robot_config_file, write_lock, bag_file): self.topic_prefix = topic_prefix self.test_config = config_file self.robot_config_file = robot_config_file resources_timer_frequency = 100.0 # Hz self.timer_interval = 1/resources_timer_frequency self.res_pipeline = {} self.BfW = BagfileWriter(bag_file, write_lock) rospy.loginfo("Waiting for obstacle_distance node...") rospy.wait_for_service(self.robot_config_file["obstacle_distance"]["services"]) self.obstacle_distance_server = rospy.ServiceProxy(self.robot_config_file["obstacle_distance"]["services"], GetObstacleDistance) rospy.Timer(rospy.Duration.from_sec(self.timer_interval), self.collect_obstacle_distances)
def __init__(self, root_frame, measured_frame, groundtruth, groundtruth_epsilon): """ Class for calculating the distance covered by the given frame in relation to a given root frame. The tf data is sent over the tf topic given in the robot_config.yaml. :param root_frame: name of the first frame :type root_frame: string :param measured_frame: name of the second frame. The distance will be measured in relation to the root_frame. :type measured_frame: string """ self.active = False self.root_frame = root_frame self.measured_frame = measured_frame self.path_length = 0.0 self.tf_sampling_freq = 20.0 # Hz self.first_value = True self.trans_old = [] self.rot_old = [] self.groundtruth = groundtruth self.groundtruth_epsilon = groundtruth_epsilon self.finished = False self.listener = tf.TransformListener() rospy.Timer(rospy.Duration.from_sec(1 / self.tf_sampling_freq), self.record_tf)
def __init__(self): self._angle = 0; self._step = STEP * -1 self._x = LINE_START_X self._y = LINE_START_Y self._x = RECT_START_X self._y = RECT_START_Y self._step_x = STEP self._step_y = STEP self._q_side = 0 self._cf = [Swarmfly(sc=self, cfid=0, color=ColorRGBA(1, 0, 1, 1), hoverpoint=Point(SPACE_OFFSET_X+1.2, SPACE_OFFSET_Y+1.2, SPACE_OFFSET_Z+1), takeoffpoint=Point(SPACE_OFFSET_X+1.25, SPACE_OFFSET_Y+0.15, SPACE_OFFSET_Z+0.5), landingpoint=Point(SPACE_OFFSET_X+0.25, SPACE_OFFSET_Y+0.15, SPACE_OFFSET_Z+0.5)), Swarmfly(sc=self, cfid=1, color=ColorRGBA(1, 1, 0, 1), hoverpoint=Point(SPACE_OFFSET_X+0.7, SPACE_OFFSET_Y+0.7, SPACE_OFFSET_Z+1), takeoffpoint=Point(SPACE_OFFSET_X+1.75, SPACE_OFFSET_Y+0.15, SPACE_OFFSET_Z+0.5), landingpoint=Point(SPACE_OFFSET_X+0.75, SPACE_OFFSET_Y+0.15, SPACE_OFFSET_Z+0.5))] for cf in self._cf: cf.hoverpoint = self._calc_circle_position(cf.id) self._rand_p1 = None self._rand_p2 = None self.timer = rospy.Timer(rospy.Duration(1.0/UPDATE_RATE), self._run)
def latch_timer(self, step_name, tmr_id, duration, cb, oneshot=False): step_dict = self.get_step_dict(step_name) def handle_evt(evt): if self.step == step_name: cb(evt) timers = step_dict.get('timers', {}) # Shutdown old timer with same ID if it exists timer = timers.get(tmr_id, None) if timer and timer.is_alive(): timer.shutdown() timer = rospy.Timer(duration, handle_evt, oneshot=oneshot) timers[tmr_id] = timer
def odom_cb(self, msg): self.pose = msg.pose.pose if not self.tmr: self.tmr = rospy.Timer( rospy.Duration(0.1), self.check_activity )
def resume(self): if not self.paused: return self.paused = False if self.current_step.timeout > 0: self.step_timer = rospy.Timer( rospy.Duration(self.current_step.timeout - (self.paused_time - self.step_load_time)), self.step_to_handler, oneshot=True ) self.paused_time = None
def sync(self, rospy_timer_event): """Handles calls from rospy.Timer to sync the local objects and images to the interop server. Args: rospy_timer_event (rospy.TimerEvent): Unused formal parameter necessary for making this function work as a callback for rospy.Timer. """ self.objects_dir.sync()
def __init__(self, listenInt, interface, freq, essid, psswd, ip, nm, discoverOnce=True): self.robotName = os.getenv('HOSTNAME') self.tolerance = 20 self.x = 0 self.y = 0 self.client = WiFiTrilatClient() self.discoverOnce = discoverOnce rospy.init_node(self.robotName + "_wifitrilat_server") #self.rssiPub = rospy.Publisher('/' + self.robotName + '/WiFiRSSI', WiFiRSSIMsg, queue_size=10) self.service = rospy.Service("/" + self.robotName + "/WiFiTrilat", WiFiTrilat, self.handle_Trilat) self.listenInt = listenInt self.interface = interface #self.mac = mac.lower() self.freq = int(freq) self.msgs = [] cli.execute_shell("ifconfig %s down" % self.listenInt) #self.wifi = Wireless(self.interface).setFrequency("%.3f" % (float(self.freq) / 1000)) self.connectToNet(essid, psswd,ip, nm) cli.execute_shell("ifconfig %s up" % self.listenInt) self.purge = rospy.Timer(rospy.Duration(2), self.msgPurge) self.heartbeat = rospy.Timer(rospy.Duration(1), self.heartbeat_call) self.discoverTimer = rospy.Timer(rospy.Duration(20), self.findSelfPos) sniff(iface=self.listenInt, prn=self.handler, store=0) rospy.spin()
def __init__(self, robotName, baseBoid, suspect=""): self.robotName = robotName self.suspect = "" self.confirmFor = "" self.timer = rospy.Timer(rospy.Duration(15), self.reset_suspect) self.suspSub = rospy.Subscriber('/swarmflock/suspicion', SuspicionMsg, self.handle_suspicion) self.manualSuspect = suspect
def __init__(self): self.define() rospy.Subscriber('speak_string', String, self.SpeedCB, queue_size=1) rospy.Timer(rospy.Duration(self.ResponseSensitivity), self.TimerCB) rospy.spin()
def main(args): rospy.init_node('enhanced_rostopic_statistic') if not args.window: args.window = 10 ts = TopicStatistic(rospy.Duration(args.window), dst_topic=args.TOPIC, ref_topic=args.ref) rospy.Timer(rospy.Duration(1.0), lambda x: ts.process()) rospy.spin()
def __init__(self, topic_prefix, config_file, robot_config_file, write_lock, bag_file): self.topic_prefix = topic_prefix self.test_config = config_file self.resources_timer_frequency = 4.0 # Hz self.timer_interval = 1/self.resources_timer_frequency self.testblock_list = self.create_testblock_list() self.pid_list = self.create_pid_list() self.requested_nodes = {} self.res_pipeline = {} self.BfW = BagfileWriter(bag_file, write_lock) rospy.Timer(rospy.Duration.from_sec(self.timer_interval), self.collect_resource_data)
def __init__(self): #Loads the robot model, which contains the robot's kinematics information self.robot = URDF.from_parameter_server() #Subscribes to information about what the current joint values are. rospy.Subscriber("/joint_states", JointState, self.joint_callback) #Subscribes to command for end-effector pose rospy.Subscriber("/cartesian_command", Transform, self.command_callback) #Subscribes to command for redundant dof rospy.Subscriber("/redundancy_command", Float32, self.redundancy_callback) # Publishes desired joint velocities self.pub_vel = rospy.Publisher("/joint_velocities", JointState, queue_size=1) #This is where we hold the most recent joint transforms self.joint_transforms = [] self.q_current = [] self.x_current = tf.transformations.identity_matrix() self.R_base = tf.transformations.identity_matrix() self.x_target = tf.transformations.identity_matrix() self.q0_desired = 0 self.last_command_time = 0 self.last_red_command_time = 0 # Initialize timer that will trigger callbacks self.mutex = Lock() self.timer = rospy.Timer(rospy.Duration(0.1), self.timer_callback)
def __init__(self): #Loads the robot model, which contains the robot's kinematics information self.robot = URDF.from_parameter_server() # Publishes Cartesian goals self.pub_command = rospy.Publisher("/cartesian_command", geometry_msgs.msg.Transform, queue_size=1) # Publishes Redundancy goals self.pub_red = rospy.Publisher("/redundancy_command", Float32, queue_size=1) # Publisher to set robot position self.pub_reset = rospy.Publisher("/joint_command", JointState, queue_size=1) #This is where we hold the most recent joint transforms self.joint_transforms = [] self.x_current = tf.transformations.identity_matrix() self.R_base = tf.transformations.identity_matrix() #Create "Interactive Marker" that we can manipulate in RViz self.init_marker() self.ee_tracking = 0 self.red_tracking = 0 self.q_current = [] self.x_target = tf.transformations.identity_matrix() self.q0_desired = 0 self.mutex = Lock() self.timer = rospy.Timer(rospy.Duration(0.3), self.timer_callback) #Subscribes to information about what the current joint values are. rospy.Subscriber("joint_states", JointState, self.joint_callback) #Resets the robot to a known pose
def __init__(self, get_model_callback, model_callback): rospy.init_node('tlight_model') self.model = get_model_callback() self.get_model = get_model_callback self.predict = model_callback self.bridge = CvBridge() self.boxes = None self.img = None self.img_out = None self.image_lock = threading.RLock() #self.sub = rospy.Subscriber('/left_camera/image_color/compressed', CompressedImage, self.updateImage) # Use for CompressedImage topic self.sub = rospy.Subscriber('/image_raw', Image, self.updateImage, queue_size=1) self.pub = rospy.Publisher('/out_image', Image, queue_size=1) rospy.Timer(rospy.Duration(0.04), self.callbackImage)
def __init__(self): self.rate = rospy.get_param("~rate", 20.0) self.period = 1.0 / self.rate # angular mode maps angular z directly to steering angle # (adjusted appropriately) # non-angular mode is somewhat suspect, but it turns # a linear y into a command to turn just so that the # achieved linear x and y match the desired, though # the vehicle has to turn to do so. # Non-angular mode is not yet supported. self.angular_mode = rospy.get_param("~angular_mode", True) # Not used yet # self.tf_buffer = tf2_ros.Buffer() # self.tf = tf2_ros.TransformListener(self.tf_buffer) # broadcast odometry self.br = tf2_ros.TransformBroadcaster() self.ts = TransformStamped() self.ts.header.frame_id = "map" self.ts.child_frame_id = "base_link" self.ts.transform.rotation.w = 1.0 self.angle = 0 # The cmd_vel is assumed to be in the base_link frame centered # on the middle of the two driven wheels # This is half the distance between the two drive wheels self.base_radius = rospy.get_param("~base_radius", 0.06) self.wheel_radius = rospy.get_param("~wheel_radius", 0.04) self.left_wheel_joint = rospy.get_param("~left_wheel_joint", "wheel_front_left_joint") self.right_wheel_joint = rospy.get_param("~right_wheel_joint", "wheel_front_right_joint") self.point_pub = rospy.Publisher("cmd_vel_spin_center", PointStamped, queue_size=1) self.joint_pub = {} self.joint_pub['left'] = rospy.Publisher("front_left/joint_state", JointState, queue_size=1) self.joint_pub['right'] = rospy.Publisher("front_right/joint_state", JointState, queue_size=1) # TODO(lucasw) is there a way to get TwistStamped out of standard # move_base publishers? # TODO(lucasw) make this more generic, read in a list of any number of wheels # the requirement is that that all have to be aligned, and also need # a set spin center. self.ind = {} self.joint_state = {} self.joint_state['left'] = JointState() self.joint_state['left'].name.append(self.left_wheel_joint) self.joint_state['left'].position.append(0.0) self.joint_state['left'].velocity.append(0.0) self.joint_state['right'] = JointState() self.joint_state['right'].name.append(self.right_wheel_joint) self.joint_state['right'].position.append(0.0) self.joint_state['right'].velocity.append(0.0) self.cmd_vel = Twist() rospy.Subscriber("cmd_vel", Twist, self.cmd_vel_callback, queue_size=2) self.timer = rospy.Timer(rospy.Duration(self.period), self.update)
def detect_and_visualize(self, root_dir=None, extension=None, classes=[], thresh=0.6, show_timer=False): global imgi global img_rect global Frame global show global trackpos global imshow global acc_pub global acc_enable acc_pub = rospy.Publisher("acc_cmd", ACCCommand, queue_size=2) acc_enable = rospy.Publisher("acc_enable", Bool, queue_size=2) # rospy.Timer(rospy.Duration(0.02), self.trackCallback) rospy.Subscriber("/zed/left/image_rect_color/compressed",CompressedImage, self.ImgCcallback, queue_size = 4) # rospy.Subscriber("/zed/left/image_rect_color",Image, self.Imgcallback, queue_size = 4) rospy.Subscriber("/zed/depth/depth_registered",Image, self.DepthImgcallback, queue_size = 4) im_path = '/home/wolfram/mxnet/example/ssd/data/demo/dog.jpg' with open(im_path, 'rb') as fp: img_content = fp.read() trackpos = 0 imshow = 0 imgi = mx.img.imdecode(img_content) while(1): # ret,img_rect = cap.read() dets = self.im_detect(root_dir, extension, show_timer=show_timer) # if not isinstance(im_list, list): # im_list = [im_list] # assert len(dets) == len(im_list) # for k, det in enumerate(dets): # img[:, :, (0, 1, 2)] = img[:, :, (2, 1, 0)] # img = img_rect.copy() self.visualize_detection(img_rect, dets[0], classes, thresh) if imshow == 1: cv2.imshow("tester", show) if cv2.waitKey(1) & 0xFF == ord('q'): break cap.release() cv2.destroyAllWindows()
def __init__(self, odom_topic, ref_topic, move_topic, path_topic, tree_topic, goal_topic, focus_topic, effort_topic, ogrid_topic, ogrid_threshold): """ Initialize with topic names and ogrid threshold as applicable. Defaults are generated at the ROS params level. """ # One-time initializations self.revisit_period = 0.05 # s self.ogrid = None self.ogrid_threshold = float(ogrid_threshold) self.state = None self.tracking = None self.done = True # Lil helpers self.rostime = lambda: rospy.Time.now().to_sec() self.intup = lambda arr: tuple(np.array(arr, dtype=np.int64)) self.get_hood = lambda img, row, col: img[row-1:row+2, col-1:col+2] # Set-up planners self.behaviors_list = [car, boat, escape] for behavior in self.behaviors_list: behavior.planner.set_system(erf=self.erf) behavior.planner.set_runtime(sys_time=self.rostime) behavior.planner.constraints.set_feasibility_function(self.is_feasible) # Initialize resetable stuff self.reset() # Subscribers rospy.Subscriber(odom_topic, Odometry, self.odom_cb) rospy.Subscriber(ogrid_topic, OccupancyGrid, self.ogrid_cb) rospy.sleep(0.5) # Publishers self.ref_pub = rospy.Publisher(ref_topic, Odometry, queue_size=1) self.path_pub = rospy.Publisher(path_topic, PoseArray, queue_size=3) self.tree_pub = rospy.Publisher(tree_topic, PoseArray, queue_size=3) self.goal_pub = rospy.Publisher(goal_topic, PoseStamped, queue_size=3) self.focus_pub = rospy.Publisher(focus_topic, PointStamped, queue_size=3) self.eff_pub = rospy.Publisher(effort_topic, WrenchStamped, queue_size=3) self.sampspace_pub = rospy.Publisher(sampspace_topic, PolygonStamped, queue_size=3) self.guide_pub = rospy.Publisher(guide_topic, PointStamped, queue_size=3) # Actions self.move_server = actionlib.SimpleActionServer(move_topic, MoveAction, execute_cb=self.move_cb, auto_start=False) self.move_server.start() rospy.sleep(1) # Timers rospy.Timer(rospy.Duration(self.revisit_period), self.publish_ref) rospy.Timer(rospy.Duration(self.revisit_period), self.action_check)
def __init__(self): self.rate = rospy.get_param("~rate", 20.0) self.period = 1.0 / self.rate # angular mode maps angular z directly to steering angle # (adjusted appropriately) # non-angular mode is somewhat suspect, but it turns # a linear y into a command to turn just so that the # achieved linear x and y match the desired, though # the vehicle has to turn to do so. self.angular_mode = rospy.get_param("~angular_mode", True) self.tf_buffer = tf2_ros.Buffer() self.tf = tf2_ros.TransformListener(self.tf_buffer) self.steer_link = rospy.get_param("~steer_link", "lead_steer") self.steer_joint = rospy.get_param("~steer_joint", "lead_steer_joint") # +/- this angle self.min_steer_angle = rospy.get_param("~min_steer_angle", -0.7) self.max_steer_angle = rospy.get_param("~max_steer_angle", 0.7) self.wheel_joint = rospy.get_param("~wheel_joint", "wheel_lead_axle") self.wheel_radius = rospy.get_param("~wheel_radius", 0.15) # the spin center is always on the fixed axle y axis of the fixed axle, # it is assume zero rotation on the steer_joint puts the steering # at zero rotation with respect to fixed axle x axis (or xz plane) self.fixed_axle_link = rospy.get_param("~fixed_axle_link", "back_axle") self.point_pub = rospy.Publisher("cmd_vel_spin_center", PointStamped, queue_size=1) self.steer_pub = rospy.Publisher("steer_joint_states", JointState, queue_size=1) # TODO(lucasw) is there a way to get TwistStamped out of standard # move_base publishers? self.joint_state = JointState() self.joint_state.name.append(self.steer_joint) self.joint_state.position.append(0.0) self.joint_state.velocity.append(0.0) self.joint_state.name.append(self.wheel_joint) self.joint_state.position.append(0.0) self.joint_state.velocity.append(0.0) self.cmd_vel = Twist() rospy.Subscriber("cmd_vel", Twist, self.cmd_vel_callback, queue_size=2) self.timer = rospy.Timer(rospy.Duration(self.period), self.update)