Pandas描述性统计


大量方法共同计算DataFrame上的描述性统计信息和其他相关操作。其中大多数是像 sum(),mean() 这样的聚集 但其中一些像 sumsum() 一样产生相同大小的对象。一般而言,这些方法采用 参数,就像 ndarray。{sum,std,...}一样, 但轴可以通过名称或整数

  • DataFrame − “index” (axis=0, default), “columns” (axis=1)

让我们创建一个DataFrame并在本章中使用这个对象来进行所有的操作。

import pandas as pd
import numpy as np

#Create a Dictionary of series
d = {'Name':pd.Series(['Tom','James','Ricky','Vin','Steve','Smith','Jack',
   'Lee','David','Gasper','Betina','Andres']),
   'Age':pd.Series([25,26,25,23,30,29,23,34,40,30,51,46]),
   'Rating':pd.Series([4.23,3.24,3.98,2.56,3.20,4.6,3.8,3.78,2.98,4.80,4.10,3.65])}

#Create a DataFrame
df = pd.DataFrame(d)
print df

输出 如下 -

Age  Name   Rating
0   25   Tom     4.23
1   26   James   3.24
2   25   Ricky   3.98
3   23   Vin     2.56
4   30   Steve   3.20
5   29   Smith   4.60
6   23   Jack    3.80
7   34   Lee     3.78
8   40   David   2.98
9   30   Gasper  4.80
10  51   Betina  4.10
11  46   Andres  3.65

和()

返回所请求轴的值的总和。默认情况下,axis是索引(axis = 0)。

import pandas as pd
import numpy as np

#Create a Dictionary of series
d = {'Name':pd.Series(['Tom','James','Ricky','Vin','Steve','Smith','Jack',
   'Lee','David','Gasper','Betina','Andres']),
   'Age':pd.Series([25,26,25,23,30,29,23,34,40,30,51,46]),
   'Rating':pd.Series([4.23,3.24,3.98,2.56,3.20,4.6,3.8,3.78,2.98,4.80,4.10,3.65])}

#Create a DataFrame
df = pd.DataFrame(d)
print df.sum()

输出 如下 -

Age                                                    382
Name     TomJamesRickyVinSteveSmithJackLeeDavidGasperBe...
Rating                                               44.92
dtype: object

每个单独的列都单独添加(添加了字符串)。

轴= 1

这个语法将给出如下所示的输出。

import pandas as pd
import numpy as np

#Create a Dictionary of series
d = {'Name':pd.Series(['Tom','James','Ricky','Vin','Steve','Smith','Jack',
   'Lee','David','Gasper','Betina','Andres']),
   'Age':pd.Series([25,26,25,23,30,29,23,34,40,30,51,46]),
   'Rating':pd.Series([4.23,3.24,3.98,2.56,3.20,4.6,3.8,3.78,2.98,4.80,4.10,3.65])}

#Create a DataFrame
df = pd.DataFrame(d)
print df.sum(1)

输出 如下 -

0    29.23
1    29.24
2    28.98
3    25.56
4    33.20
5    33.60
6    26.80
7    37.78
8    42.98
9    34.80
10   55.10
11   49.65
dtype: float64

意思()

返回平均值

import pandas as pd
import numpy as np

#Create a Dictionary of series
d = {'Name':pd.Series(['Tom','James','Ricky','Vin','Steve','Smith','Jack',
   'Lee','David','Gasper','Betina','Andres']),
   'Age':pd.Series([25,26,25,23,30,29,23,34,40,30,51,46]),
   'Rating':pd.Series([4.23,3.24,3.98,2.56,3.20,4.6,3.8,3.78,2.98,4.80,4.10,3.65])}

#Create a DataFrame
df = pd.DataFrame(d)
print df.mean()

输出 如下 -

Age       31.833333
Rating     3.743333
dtype: float64

STD()

返回数字列的Bressel标准偏差。

import pandas as pd
import numpy as np

#Create a Dictionary of series
d = {'Name':pd.Series(['Tom','James','Ricky','Vin','Steve','Smith','Jack',
   'Lee','David','Gasper','Betina','Andres']),
   'Age':pd.Series([25,26,25,23,30,29,23,34,40,30,51,46]),
   'Rating':pd.Series([4.23,3.24,3.98,2.56,3.20,4.6,3.8,3.78,2.98,4.80,4.10,3.65])}

#Create a DataFrame
df = pd.DataFrame(d)
print df.std()

输出 如下 -

Age       9.232682
Rating    0.661628
dtype: float64

功能和说明

让我们现在理解Python Pandas中描述性统计的功能。下表列出了重要功能 -

S.No. 功能 描述
1 count() 非空观测值的数量
2 sum() 值的总和
3 mean() 价值的意义
4 median() 价值的中间值
5 mode() 价值观的模式
6 std() 价值观的标准差
7 min() 最小值
8 max() 最大值
9 abs() 绝对值
10 prod() 价值的产物
11 cumsum() 累计和
12 cumprod() 累积产品

- 由于DataFrame是一个异构数据结构。 通用操作不适用于所有功能。

  • sum(),cumsum() 等函数可以同时处理数字和字符(或)字符串数据元素,而不会出现任何错误。虽然 n 练习中,角色聚合从来不会被普遍使用,但这些功能不会抛出任何异常。

  • 当DataFrame包含字符或字符串数​​据时 像 abs(),cumprod() 等函数会抛出异常,因为无法执行这些操作。

汇总数据

describe() 函数计算关于所述数据帧列的统计信息的摘要。

import pandas as pd
import numpy as np

#Create a Dictionary of series
d = {'Name':pd.Series(['Tom','James','Ricky','Vin','Steve','Smith','Jack',
   'Lee','David','Gasper','Betina','Andres']),
   'Age':pd.Series([25,26,25,23,30,29,23,34,40,30,51,46]),
   'Rating':pd.Series([4.23,3.24,3.98,2.56,3.20,4.6,3.8,3.78,2.98,4.80,4.10,3.65])}

#Create a DataFrame
df = pd.DataFrame(d)
print df.describe()

输出 如下 -

Age         Rating
count    12.000000      12.000000
mean     31.833333       3.743333
std       9.232682       0.661628
min      23.000000       2.560000
25%      25.000000       3.230000
50%      29.500000       3.790000
75%      35.500000       4.132500
max      51.000000       4.800000

该函数给出了 meanstd IQR 值。而且,函数不包括字符列和关于数字列的摘要。 'include' 是用于传递关于需要考虑哪些列进行汇总的必要信息的参数。拿出价值清单; 默认情况下为'数字'。

  • 对象 - 汇总字符串列
  • 数字 - 汇总数字列
  • 全部 - 将所有列汇总在一起(不应将其作为列表值传递)

现在,在程序中使用以下语句并检查输出 -

import pandas as pd
import numpy as np

#Create a Dictionary of series
d = {'Name':pd.Series(['Tom','James','Ricky','Vin','Steve','Smith','Jack',
   'Lee','David','Gasper','Betina','Andres']),
   'Age':pd.Series([25,26,25,23,30,29,23,34,40,30,51,46]),
   'Rating':pd.Series([4.23,3.24,3.98,2.56,3.20,4.6,3.8,3.78,2.98,4.80,4.10,3.65])}

#Create a DataFrame
df = pd.DataFrame(d)
print df.describe(include=['object'])

输出 如下 -

Name
count       12
unique      12
top      Ricky
freq         1

现在,使用以下语句并检查输出 -

import pandas as pd
import numpy as np

#Create a Dictionary of series
d = {'Name':pd.Series(['Tom','James','Ricky','Vin','Steve','Smith','Jack',
   'Lee','David','Gasper','Betina','Andres']),
   'Age':pd.Series([25,26,25,23,30,29,23,34,40,30,51,46]),
   'Rating':pd.Series([4.23,3.24,3.98,2.56,3.20,4.6,3.8,3.78,2.98,4.80,4.10,3.65])}

#Create a DataFrame
df = pd.DataFrame(d)
print df. describe(include='all')

输出 如下 -

Age          Name       Rating
count   12.000000        12    12.000000
unique        NaN        12          NaN
top           NaN     Ricky          NaN
freq          NaN         1          NaN
mean    31.833333       NaN     3.743333
std      9.232682       NaN     0.661628
min     23.000000       NaN     2.560000
25%     25.000000       NaN     3.230000
50%     29.500000       NaN     3.790000
75%     35.500000       NaN     4.132500
max     51.000000       NaN     4.800000