5.9. 预测目标 (`y`) 的转换 5.8. 成对的矩阵, 类别和核函数 6. 数据集加载工具 5.9. 预测目标 (y) 的转换 本章要介绍的这些变换器不是被用于特征的,而是只被用于变换监督学习的目标。 如果你希望变换预测目标以进行学习,但是在原始空间中评估模型,请参考回归中的目标转换 。 5.9.1. 标签二值化 LabelBinarizer 是一个用来从多类别列表创建标签矩阵的工具类: >>> from sklearn import preprocessing >>> lb = preprocessing.LabelBinarizer() >>> lb.fit([1, 2, 6, 4, 2]) LabelBinarizer(neg_label=0, pos_label=1, sparse_output=False) >>> lb.classes_ array([1, 2, 4, 6]) >>> lb.transform([1, 6]) array([[1, 0, 0, 0], [0, 0, 0, 1]]) 对于多类别是实例,可以使用 MultiLabelBinarizer: >>> lb = preprocessing.MultiLabelBinarizer() >>> lb.fit_transform([(1, 2), (3,)]) array([[1, 1, 0], [0, 0, 1]]) >>> lb.classes_ array([1, 2, 3]) 5.9.2. 标签编码 LabelEncoder 是一个可以用来将标签规范化的工具类,它可以将标签的编码值范围限定在[0,n_classes-1]. 这在编写高效的Cython程序时是非常有用的. LabelEncoder 可以如下使用: >>> from sklearn import preprocessing >>> le = preprocessing.LabelEncoder() >>> le.fit([1, 2, 2, 6]) LabelEncoder() >>> le.classes_ array([1, 2, 6]) >>> le.transform([1, 1, 2, 6]) array([0, 0, 1, 2]) >>> le.inverse_transform([0, 0, 1, 2]) array([1, 1, 2, 6]) 当然,它也可以用于非数值型标签的编码转换成数值标签(只要它们是可哈希并且可比较的): >>> le = preprocessing.LabelEncoder() >>> le.fit(["paris", "paris", "tokyo", "amsterdam"]) LabelEncoder() >>> list(le.classes_) ['amsterdam', 'paris', 'tokyo'] >>> le.transform(["tokyo", "tokyo", "paris"]) array([2, 2, 1]) >>> list(le.inverse_transform([2, 2, 1])) ['tokyo', 'tokyo', 'paris'] 5.8. 成对的矩阵, 类别和核函数 6. 数据集加载工具