HiveQL Select Joins HiveQL Select-Group By JOIN是一个子句,用于通过使用每个表的常见值来组合两个表中的特定字段。它用于组合来自数据库中两个或多个表的记录。它或多或少类似于SQL JOIN。 句法 join_table: table_reference JOIN table_factor [join_condition] | table_reference {LEFT|RIGHT|FULL} [OUTER] JOIN table_reference join_condition | table_reference LEFT SEMI JOIN table_reference join_condition | table_reference CROSS JOIN table_reference [join_condition] 例 我们将在本章中使用以下两个表格。考虑一下名为CUSTOMERS的表。 +----+----------+-----+-----------+----------+ | ID | NAME | AGE | ADDRESS | SALARY | +----+----------+-----+-----------+----------+ | 1 | Ramesh | 32 | Ahmedabad | 2000.00 | | 2 | Khilan | 25 | Delhi | 1500.00 | | 3 | kaushik | 23 | Kota | 2000.00 | | 4 | Chaitali | 25 | Mumbai | 6500.00 | | 5 | Hardik | 27 | Bhopal | 8500.00 | | 6 | Komal | 22 | MP | 4500.00 | | 7 | Muffy | 24 | Indore | 10000.00 | +----+----------+-----+-----------+----------+ 考虑另一个表ORDERS如下: +-----+---------------------+-------------+--------+ |OID | DATE | CUSTOMER_ID | AMOUNT | +-----+---------------------+-------------+--------+ | 102 | 2009-10-08 00:00:00 | 3 | 3000 | | 100 | 2009-10-08 00:00:00 | 3 | 1500 | | 101 | 2009-11-20 00:00:00 | 2 | 1560 | | 103 | 2008-05-20 00:00:00 | 4 | 2060 | +-----+---------------------+-------------+--------+ 有如下几种不同类型的连接: 加入 左外连接 右外部连接 全外连接 加入 JOIN子句用于组合和检索多个表中的记录。JOIN与SQL中的OUTER JOIN相同。JOIN条件是使用表的主键和外键引发的。 以下查询在CUSTOMER和ORDER表上执行JOIN,并检索记录: hive> SELECT c.ID, c.NAME, c.AGE, o.AMOUNT FROM CUSTOMERS c JOIN ORDERS o ON (c.ID = o.CUSTOMER_ID); 成功执行查询后,您将看到以下响应: +----+----------+-----+--------+ | ID | NAME | AGE | AMOUNT | +----+----------+-----+--------+ | 3 | kaushik | 23 | 3000 | | 3 | kaushik | 23 | 1500 | | 2 | Khilan | 25 | 1560 | | 4 | Chaitali | 25 | 2060 | +----+----------+-----+--------+ 左外连接 HiveQL LEFT OUTER JOIN返回左表中的所有行,即使右表中没有匹配。这意味着,如果ON子句与右表中的0(零)记录相匹配,JOIN仍会在结果中返回一行,但右表中的每列都有NULL。 LEFT JOIN返回左表中的所有值,加上右表中的匹配值,或者在没有匹配JOIN谓词的情况下返回NULL。 以下查询演示了CUSTOMER和ORDER表之间的LEFT OUTER JOIN: hive> SELECT c.ID, c.NAME, o.AMOUNT, o.DATE FROM CUSTOMERS c LEFT OUTER JOIN ORDERS o ON (c.ID = o.CUSTOMER_ID); 成功执行查询后,您将看到以下响应: +----+----------+--------+---------------------+ | ID | NAME | AMOUNT | DATE | +----+----------+--------+---------------------+ | 1 | Ramesh | NULL | NULL | | 2 | Khilan | 1560 | 2009-11-20 00:00:00 | | 3 | kaushik | 3000 | 2009-10-08 00:00:00 | | 3 | kaushik | 1500 | 2009-10-08 00:00:00 | | 4 | Chaitali | 2060 | 2008-05-20 00:00:00 | | 5 | Hardik | NULL | NULL | | 6 | Komal | NULL | NULL | | 7 | Muffy | NULL | NULL | +----+----------+--------+---------------------+ 右外部连接 HiveQL RIGHT OUTER JOIN返回右表中的所有行,即使左表中没有匹配。如果ON子句与左表中的0(零)记录相匹配,则JOIN仍会在结果中返回一行,但左表中的每列都有NULL。 右连接返回右表中的所有值,加上左表中的匹配值,或者在没有匹配连接谓词的情况下返回NULL。 以下查询演示了CUSTOMER和ORDER表之间的RIGHT OUTER JOIN。 hive> SELECT c.ID, c.NAME, o.AMOUNT, o.DATE FROM CUSTOMERS c RIGHT OUTER JOIN ORDERS o ON (c.ID = o.CUSTOMER_ID); 成功执行查询后,您将看到以下响应: +------+----------+--------+---------------------+ | ID | NAME | AMOUNT | DATE | +------+----------+--------+---------------------+ | 3 | kaushik | 3000 | 2009-10-08 00:00:00 | | 3 | kaushik | 1500 | 2009-10-08 00:00:00 | | 2 | Khilan | 1560 | 2009-11-20 00:00:00 | | 4 | Chaitali | 2060 | 2008-05-20 00:00:00 | +------+----------+--------+---------------------+ 全外连接 HiveQL FULL OUTER JOIN将满足JOIN条件的左外部表和右外部表的记录组合在一起。连接的表包含来自两个表的所有记录,或者在任何一边填充缺失匹配的NULL值。 以下查询演示了CUSTOMER和ORDER表之间的FULL OUTER JOIN: hive> SELECT c.ID, c.NAME, o.AMOUNT, o.DATE FROM CUSTOMERS c FULL OUTER JOIN ORDERS o ON (c.ID = o.CUSTOMER_ID); 成功执行查询后,您将看到以下响应: +------+----------+--------+---------------------+ | ID | NAME | AMOUNT | DATE | +------+----------+--------+---------------------+ | 1 | Ramesh | NULL | NULL | | 2 | Khilan | 1560 | 2009-11-20 00:00:00 | | 3 | kaushik | 3000 | 2009-10-08 00:00:00 | | 3 | kaushik | 1500 | 2009-10-08 00:00:00 | | 4 | Chaitali | 2060 | 2008-05-20 00:00:00 | | 5 | Hardik | NULL | NULL | | 6 | Komal | NULL | NULL | | 7 | Muffy | NULL | NULL | | 3 | kaushik | 3000 | 2009-10-08 00:00:00 | | 3 | kaushik | 1500 | 2009-10-08 00:00:00 | | 2 | Khilan | 1560 | 2009-11-20 00:00:00 | | 4 | Chaitali | 2060 | 2008-05-20 00:00:00 | +------+----------+--------+---------------------+ HiveQL Select-Group By