numpy.unique numpy.delete NumPy bitwise_and 此函数返回输入数组中的唯一元素数组。该函数可以返回唯一值数组的数组和关联索引数组。索引的性质取决于函数调用中返回参数的类型。 numpy.unique(arr, return_index, return_inverse, return_counts) 这里 序号 参数和描述 1 arr 输入数组。如果不是一维阵列,将会变平 2 return_index 如果为True,则返回输入数组中元素的索引 3 return_inverse 如果为True,则返回唯一数组的索引,该索引可用于重建输入数组 4 return_counts 如果为True,则返回唯一数组中的元素出现在原始数组中的次数 例 import numpy as np a = np.array([5,2,6,2,7,5,6,8,2,9]) print 'First array:' print a print '\n' print 'Unique values of first array:' u = np.unique(a) print u print '\n' print 'Unique array and Indices array:' u,indices = np.unique(a, return_index = True) print indices print '\n' print 'We can see each number corresponds to index in original array:' print a print '\n' print 'Indices of unique array:' u,indices = np.unique(a,return_inverse = True) print u print '\n' print 'Indices are:' print indices print '\n' print 'Reconstruct the original array using indices:' print u[indices] print '\n' print 'Return the count of repetitions of unique elements:' u,indices = np.unique(a,return_counts = True) print u print indices 其输出如下 First array: [5 2 6 2 7 5 6 8 2 9] Unique values of first array: [2 5 6 7 8 9] Unique array and Indices array: [1 0 2 4 7 9] We can see each number corresponds to index in original array: [5 2 6 2 7 5 6 8 2 9] Indices of unique array: [2 5 6 7 8 9] Indices are: [1 0 2 0 3 1 2 4 0 5] Reconstruct the original array using indices: [5 2 6 2 7 5 6 8 2 9] Return the count of repetitions of unique elements: [2 5 6 7 8 9] [3 2 2 1 1 1] numpy.delete NumPy bitwise_and